Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Pharmacol Exp Ther ; 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-20235777

ABSTRACT

We hypothesized that exosomal microRNAs (miRNAs) could be implied in the pathogenesis of thromboembolic complications in COVID-19. We isolated circulating exosomes from COVID-19 patients and then we divided our population in two arms based on the D-dimer level on hospital admission. We observed that exosomal miR-145 and miR-885 significantly correlate with D-Dimer levels. Moreover, we demonstrate that human endothelial cells express the main cofactors needed for SARS-CoV-2 internalization, including ACE2, TMPRSS2, and CD-147. Interestingly, human endothelial cells treated with serum from COVID-19 patients release significantly less miR-145 and miR-885, exhibit increased apoptosis, and display significantly impaired angiogenetic properties compared to cells treated with non-COVID-19 serum. Taken together, our data indicate that exosomal miR-145 and miR-885 are essential in modulating thromboembolic events in COVID-19. Significance Statement In this work, we demonstrate for the first time that two specific microRNA (namely miR-145 and miR-885) contained in circulating exosomes are functionally involved in thromboembolic events in COVID-19. Our findings are especially relevant to the general audience when considering the emerging prominence of post-acute sequelae of COVID-19 systemic manifestations known as Long-COVID.

2.
J Pharmacol Exp Ther ; 384(1): 225-226, 2023 01.
Article in English | MEDLINE | ID: covidwho-2279782
3.
Pharmacol Res ; 191: 106702, 2023 05.
Article in English | MEDLINE | ID: covidwho-2245841

ABSTRACT

We have recently demonstrated in a double-blind randomized trial the beneficial effects of L-Arginine in patients hospitalized for COVID-19. We hypothesize that one of the mechanisms underlying the favorable effects of L-Arginine is its action on inflammatory cytokines. To verify our hypothesis, we measured longitudinal plasma levels of pro-inflammatory and anti-inflammatory cytokines implied in the pathophysiology of COVID-19 in patients randomized to receive oral L-Arginine or placebo. The study was successfully completed by 169 patients. Patients in the L-Arginine arm had a reduced respiratory support evaluated at 10 and 20 days; moreover, the time to hospital discharge was significantly shorter in the L-Arginine group. The assessment of circulating cytokines revealed that L-Arginine significantly reduced the circulating levels of pro-inflammatory IL-2, IL-6, and IFN-γ and increased the levels of the anti-inflammatory IL-10. Taken together, these findings indicate that adding L-Arginine to standard therapy in COVID-19 patients markedly reduces the need of respiratory support and the duration of in-hospital stay; moreover, L-Arginine significantly regulates circulating levels of pro-inflammatory and anti-inflammatory cytokines.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cytokines , Arginine/therapeutic use , Anti-Inflammatory Agents/adverse effects
4.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2225011

ABSTRACT

Oxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome. Thus, we collected serum from COVID-19 patients on hospital admission, and we incubated these sera with human endothelial cells, comparing the effects on the generation of reactive oxygen species (ROS) and lipid peroxidation between patients who survived and patients who did not survive. We found that the serum from non-survivors significantly increased lipid peroxidation. Moreover, serum from non-survivors markedly regulated the expression levels of the main markers of ferroptosis, including GPX4, SLC7A11, FTH1, and SAT1, a response that was rescued by silencing TNFR1 on endothelial cells. Taken together, our data indicate that serum from patients who did not survive COVID-19 triggers lipid peroxidation in human endothelial cells.

12.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2010118

ABSTRACT

T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.


Subject(s)
Endothelial Cells/pathology , Hepatitis A Virus Cellular Receptor 1/metabolism , MicroRNAs , Angiotensin-Converting Enzyme 2 , COVID-19 , Dengue , Endothelial Cells/metabolism , Hemorrhagic Fever, Ebola , Humans , Immunoglobulins , MicroRNAs/genetics , Mucins , Neuropilin-1/genetics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Stroke , Zika Virus , Zika Virus Infection
13.
Pharmacol Res ; 183: 106360, 2022 09.
Article in English | MEDLINE | ID: covidwho-2008026

ABSTRACT

INTRODUCTION: Recent evidence suggests that oxidative stress and endothelial dysfunction play critical roles in the pathophysiology of COVID-19 and Long-COVID. We hypothesized that a supplementation combining L-Arginine (to improve endothelial function) and Vitamin C (to reduce oxidation) could have favorable effects on Long-COVID symptoms. METHODS: We designed a survey (LINCOLN: L-Arginine and Vitamin C improves Long-COVID), assessing several symptoms that have been associated with Long-COVID to be administered nationwide to COVID-19 survivors; the survey also included effort perception, measured using the Borg scale. Patients receiving the survey were divided in two groups, with a 2:1 ratio: the first group included patients that received L-Arginine + Vitamin C, whereas the second group received a multivitamin combination (alternative treatment). RESULTS: 1390 patients successfully completed the survey. Following a 30-day treatment in both groups, the survey revealed that patients in the L-Arginine + Vitamin C treatment arm had significantly lower scores compared to patients who had received the multivitamin combination. There were no other significant differences between the two groups. When examining effort perception, we observed a significantly lower value (p < 0.0001) in patients receiving L-Arginine + Vitamin C compared to the alternative-treatment arm. CONCLUSIONS: Our survey indicates that the supplementation with L-Arginine + Vitamin C has beneficial effects in Long-COVID, in terms of attenuating its typical symptoms and improving effort perception.


Subject(s)
Ascorbic Acid , COVID-19 Drug Treatment , COVID-19 , Arginine/therapeutic use , Ascorbic Acid/therapeutic use , COVID-19/complications , Humans , Vitamins , Post-Acute COVID-19 Syndrome
14.
Eur J Intern Med ; 99: 89-92, 2022 05.
Article in English | MEDLINE | ID: covidwho-1803999

ABSTRACT

BACKGROUND: Hypertension is common in older adults and its incidence increases with age. We investigated the correlation between physical and cognitive impairment in older adults with frailty and hypertension. METHODS: We recruited frail hypertensive older adults during the COVID-19 pandemic, between March 2021 and December 2021. Global cognitive function was assessed through the Montreal Cognitive Assessment (MoCA), physical frailty assessment was performed following the Fried criteria, and all patients underwent physical evaluation through 5-meter gait speed test. RESULTS: We enrolled 203 frail hypertensive older adults and we found a significant correlation between MoCA score and gait speed test (r: 0.495; p<0.001) in our population. To evaluate the impact of comorbidities and other factors on our results, we applied a linear regression analysis with MoCA score as a dependent variable, observing a significant association with age, diabetes, chronic obstructive pulmonary disease (COPD), and gait speed test. CONCLUSIONS: Our study revealed for the first time a significant correlation between physical and cognitive impairment in frail hypertensive elderly subjects.


Subject(s)
COVID-19 , Cognitive Dysfunction , Frailty , Hypertension , Aged , COVID-19/complications , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Frail Elderly , Frailty/epidemiology , Humans , Hypertension/epidemiology , Pandemics
15.
J Pharmacol Exp Ther ; 381(3): 197-203, 2022 06.
Article in English | MEDLINE | ID: covidwho-1765068

ABSTRACT

Cardiac rehabilitation (CR) following acute myocardial infarction (AMI) improves physical capacities and decreases hospitalizations and cardiovascular mortality. L-arginine is the substrate used by nitric oxide (NO) synthase to generate NO and it has been shown to exert its beneficial effects on endothelium driving vasodilatation, reducing inflammation, and ameliorating physical function. We hypothesized that L-arginine could enhance physical capacities in patients who underwent CR after AMI. We designed a study aimed to assess the effects of L-arginine administration on the physical capacity of patients who underwent coronary revascularization after AMI. The trial was carried out amid the COVID-19 pandemic. Patients were assigned, with a 2:1 ratio, to add to their standard therapy one bottle containing 1.66 g of L-arginine or one bottle of identical aspect apart from not containing L-arginine, twice a day orally for 3 weeks. Patients performed a 6-minute walking test (6MWT), and their Borg modified 0-10 rating of perceived exertion (BRPE) was assessed before starting and at the end of the treatment. Seventy-five patients receiving L-arginine, and 35 receiving placebo successfully completed the study. The 6MWT distance increased significantly in the L-arginine group compared with both baseline and placebo (P < 0.0001). Additionally, we observed a significant improvement in the BRPE in patients treated with L-arginine but not in the placebo group. Taken together, our data indicate that L-arginine potentiates the response to CR independently of age, sex, baseline functional capacity, and comorbid conditions. SIGNIFICANCE STATEMENT: This study shows for the first time that oral supplementation of L-arginine potentiates the response to cardiac rehabilitation after myocardial infarction and cardiac revascularization. Indeed, we observed a significant improvement in two fundamental parameters, namely, the 6-minute walking test and the Borg modified 0-10 rating of perceived exertion. Strikingly, the beneficial effects of L-arginine were independent of age, sex, comorbid conditions, and baseline functional capacity.


Subject(s)
COVID-19 , Cardiac Rehabilitation , Myocardial Infarction , Arginine , Heart , Humans , Myocardial Infarction/drug therapy , Nitric Oxide Synthase , Pandemics
16.
Nutrients ; 13(11)2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502476

ABSTRACT

l-Arginine is involved in many different biological processes and recent reports indicate that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated systematic overview of the current evidence on the functional contribution of L-Arginine in COVID-19, describing its actions on endothelial cells and the immune system and discussing its potential as a therapeutic tool, emerged from recent clinical experimentations.


Subject(s)
Arginine/metabolism , COVID-19/metabolism , Endothelial Cells/metabolism , Immune System/metabolism , SARS-CoV-2/pathogenicity , Animals , Arginine/therapeutic use , COVID-19/immunology , COVID-19/virology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/virology , Host-Pathogen Interactions , Humans , Immune System/drug effects , Immune System/immunology , Immune System/virology , Nitric Oxide/metabolism , SARS-CoV-2/immunology , COVID-19 Drug Treatment
17.
EClinicalMedicine ; 40: 101125, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1408847

ABSTRACT

BACKGROUND: We and others have previously demonstrated that the endothelium is a primary target of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and L-arginine has been shown to improve endothelial dysfunction. However, the effects of L-arginine have never been evaluated in coronavirus disease 2019 (COVID-19). METHODS: This is a parallel-group, double-blind, randomized, placebo-controlled trial conducted on patients hospitalized for severe COVID-19. Patients received 1.66 g L-arginine twice a day or placebo, administered orally. The primary efficacy endpoint was a reduction in respiratory support assessed 10 and 20 days after randomization. Secondary outcomes were the length of in-hospital stay, the time to normalization of lymphocyte number, and the time to obtain a negative real-time reverse transcription polymerase chain reaction (RT-PCR) for SARS-CoV-2 on nasopharyngeal swab. This clinical trial had been registered at ClinicalTrials.gov, identifier: NCT04637906. FINDINGS: We present here the results of the initial interim analysis on the first 101 patients. No treatment-emergent serious adverse events were attributable to L-arginine. At 10-day evaluation, 71.1% of patients in the L-arginine arm and 44.4% in the placebo arm (p < 0.01) had the respiratory support reduced; however, a significant difference was not detected 20 days after randomization. Strikingly, patients treated with L-arginine exhibited a significantly reduced in-hospital stay vs placebo, with a median (interquartile range 25th,75th percentile) of 46 days (45,46) in the placebo group vs 25 days (21,26) in the L-arginine group (p < 0.0001); these findings were also confirmed after adjusting for potential confounders including age, duration of symptoms, comorbidities, D-dimer, as well as antiviral and anticoagulant treatments. The other secondary outcomes were not significantly different between groups. INTERPRETATION: In this interim analysis, adding oral L-arginine to standard therapy in patients with severe COVID-19 significantly decreases the length of hospitalization and reduces the respiratory support at 10 but not at 20 days after starting the treatment. FUNDING: Both placebo and L-arginine were kindly provided by Farmaceutici Damor S.p.A., Naples.

18.
Noncoding RNA ; 7(1)2021 Feb 02.
Article in English | MEDLINE | ID: covidwho-1060055

ABSTRACT

Neuropilin-1 is a transmembrane glycoprotein that has been implicated in several processes including angiogenesis and immunity. Recent evidence has also shown that it is implied in the cellular internalization of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). We hypothesized that specific microRNAs can target Neuropilin-1. By combining bioinformatic and functional approaches, we identified miR-24 as a regulator of Neuropilin-1 transcription. Since Neuropilin-1 has been shown to play a key role in the endothelium-mediated regulation of the blood-brain barrier, we validated miR-24 as a functional modulator of Neuropilin-1 in human brain microvascular endothelial cells (hBMECs), which are the most suitable cell line for an in vitro blood-brain barrier model.

20.
Antioxidants (Basel) ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: covidwho-962750

ABSTRACT

The potential beneficial effects of the antioxidant properties of vitamin C have been investigated in a number of pathological conditions. In this review, we assess both clinical and preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and controversies in investigations on vitamin C and cardiovascular disorders are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL